
1

Decision Management Community Challenge March 2019 Offering

Donated Organs for Transplant

Solution using ALEF, Netherlands Tax Administration

Introduction

ALEF is an acronym of Agile Law Execution Factory. It is a tool built with Jetbrains MPS by the

Netherlands Tax Administration (NTA) to specify and test rules and to generate decision

services from these rules. These rules are specified in a controlled natural language called

RegelSpraaki. The NTA uses decision services made in this way for millions of tax decisions

each year.

Our understanding of the challenge
Given an offer of organ(s) and a response to the offer the system determines the next action for the

offer.

Initially, there is no response to the offer, but solely an offer of donated organ(s). In this initial state,

the only next action is to pass the offer on to a candidate who needs this type of organ (narrowed

down to heart or lungs by the challenge). Next action in this initial state will be: ‘Contact candidate

with offer of organ’. Of course, this action depends on the existence of candidates for this organ.

Because we have treated the challenge as a complete slice of realityii, there are 3 named candidates

for each organ.

Depending on the response of the candidate, next actions for an offer of a single organ can be:

Offer Response Next action

1 Heart none Contact candidate with offer of organ

2 Heart ‘accepted’ Send organ in offer to candidate

3 Heart ‘declined’ Contact candidate with offer of organ

4 Heart ‘declined’ Actions for offers exhausted. Proceed to fall back phase

In #3 the next action is possible only if there are other candidates for the offered organ who have

not been approached with an offer of the organ.

In #4 all the candidates for the offered organ have declined. The organ (as part of the block of

organs) can be offered to transplant centers instead of individual candidates. Following the clue in

the challenge, we have dubbed this the ‘fall back phase’. Please see below.

The challenge states that there is a wait state for the offer of one organ when another organ from

the same donor is not declined by all candidates in need of this latter organ.

For example: Both a heart and lungs from the same donor are offered for donation. The heart has

not yet been declined by all candidates for it but the lungs were declined by all its candidates. In this

case, the lungs are ‘waiting’ for the heart to be offered to all candidates for it.

Although the challenge speaks of ‘no action’ in this case, ‘waiting’ was regarded as an action by us.

2

So, the next actions for the two offers of organs in the challenge can beiii:

 Offer, response and action Offer, response and action

Offer Response Next action Offer Response Next action

1 Heart none Contact
candidate with
offer of organ

Lungs none Contact
candidate with
offer of organ

2 Heart none Contact
candidate with
offer of organ

Lungs ‘accepted’ Send organ in
offer to candidate

3 Heart none Contact
candidate with
offer of organ

Lungs ‘declined’ Contact
candidate with
offer of organ

4 Heart none Contact
candidate with
offer of organ

Lungs ‘declined’ Actions for offers
exhausted.
Proceed to fall
back phase

5 Heart ‘accepted’ Send organ in
offer to candidate

Lungs ‘accepted’ Send organ in
offer to candidate

6 Heart ‘accepted’ Send organ in
offer to candidate

Lungs ‘declined’ Contact
candidate with
offer of organ

6 Heart ‘accepted’ Send organ in
offer to candidate

Lungs ‘declined’ Actions for offers
exhausted.
Proceed to fall
back phase

7 Heart ‘declined’ Contact
candidate with
offer of organ

Lungs ‘declined’ Contact
candidate with
offer of organ

8 Heart ‘declined’ Contact
candidate with
offer of organ

Lungs ‘declined’ Hold offer while
waiting for other
offers in block

9 Heart ‘declined’ Actions for offers
exhausted.
Proceed to fall
back phase

Lungs ‘declined’ Actions for offers
exhausted.
Proceed to fall
back phase

#6 is the scenario where one organ was accepted by a candidate and the other organ will be offered

to transplant centers (the fall back phase described below).

#8 is the ‘wait action’ for the offer of the donor’s lungs (as per the example above).

#9 is the scenario where both organs have been declined by all candidates and the block of both

heart and lungs will be offered to transplant centers. The action is then ‘proceed’ to fall back phase.

3

Fall back phase
In the fall back phase, a block of organs is offered to transplant centers. The challenge is somewhat

inconsistent of its treatment of this block, because a partial accept of a block is possible.

We have dealt with this inconsistency by coupling actions to blocks when the block is declined or

accepted, but coupling actions to offers within the block when the block is partially accepted.

Also not clear in the case is whether to treat a single unallocated organ from the previous phase as a

block. We decided to regard a single organ block as a block. The possible actions for a single organ

block are:

Response Next action for block

10 None Offer block to transplant center

11 ‘accept’ Send block to transplant center

12 ‘decline’ Offer block to transplant center

13 ‘decline’ Block completely declined. Challenge does not state what to do
next’

#11 is the case that the block is accepted.

#13 is the unhappy scenario that no transplant center accepted the block. The process ends.

For a multiple organ block, there are several other possibilities. The possible actions for such a block

are:

Response Next action for block

14 None Offer block to transplant center

15 ‘accept’ Send block to transplant center

16 ‘accept’ Send organ in block to transplant center

17 ‘decline’ Offer block to transplant center

18 ‘decline’ Block completely declined. Challenge does not state what to do
next’

19 ‘decline’ 'Actions for organ(s) in block exhausted. Challenge does not state
what to do next'

20 ‘partial accept’ Send organ in block to transplant center
Offer remaining organs in block to transplant center

21 ‘partial accept’ Send organ in block to transplant center
Actions for organ(s) in block exhausted. Challenge does not state
what to do next

#14 is the case that one organ in a multiple organ block is accepted, while the other organs were

previously accepted.

#18 is the case when all organs in the block have been declined by all transplant centers. The process

ends.

#19 is the scenario that the transplant center with the lowest priority declines the block, but a partial

accept was received from a another transplant center. The process ends.

#20 A partial accept results in 2 actions for the block: 1 for sending the accepted organ to the

transplant center and 1 for offering the remaining organ to other transplant centers.

#21 is the situation that the transplant center with the lowest priority accepts one organ in the

block, leaving one organ unallocated. The process ends.

4

The solution in ALEF

ALEF generates stateless services only. This limitation leads us to rely on another client application to

keep state and feed the response to offer of organs or blocks of organ(s) to our service.

We explored a solution in which the output of the service could be fed back into the service to cycle

through the whole process and to minimize ‘state keeping’ by the consuming application. This was

not feasible at the momentiv.

So, in the end, we built a service that relies on a consuming application for keeping state. This

service has the following request and responsev:

The external application calls the service with a request containing:

• a Block of offers of one organ each.

• A list of candidates and the transplant center that treats them

• A list of transplant centers

The block has a status variable ‘InFallBackPhase’ that should be set to true when the process is in the

fall back phase. Setting this status variable happens as the result of an Action (see #6 and #9 above

for example). This variable has a default value of ‘false’, so it can be left out of the request initially.

When a block is in fallback phase, the elements previousDecision and previousPriority must be set.

5

These elements are also present with individual offers, where they are used when not in the fall back

phase.

Each Offer has two variables to communicate the latest response of candidates to the service:

previousDecision and previousPriority. previousDecision is an enumeration with values ‘accepted’,

‘declined’ and ‘partiallyAccepted’. The last value is solely used for blocks in the fall back phase.

previousPriority is the priority of the candidate responding to an offer. It has a default value of ‘0’, so

it can be left out in the initial request.

Together, previousDecision and previousPriority, provide a shorthand notation of the decision in

response to an offer and who made this decision.

The list of candidates is straightforward: There is one list of alle candidates, the type of organ they

needvi and the transplant centre that treats the candidate.

The list of transplant centers in the inputMessage is used in the fallback Phase. It should be optional

in the first phase, but that would take additional input validation logic, so we decided to make this

list a mandatory element.

The outputmessage of the service has an Action element that is either linked to an offer or to a block

(the former when not in the fall back phase, the latter when in the fall back phase).

The nextActionCode is an enumeration with values corresponding to the actions above. Please see

Part 2 for the entire schema.

Logic of the service

Working our way back from a result of the service, we see a typical rule for an ‘offer to eligible

candidate’. This rule applies when not in the fall back phase and given that there are candidates to

whom an offer of an organ can be made.

The eligible candidate is the specific candidate the offer will be made to. For this relationship, a

specific fact type is used:

6

To instantiate this fact type, we use a fact creation rule:

The first condition points to a characteristic of the candidate: Being an eligible candidate. This

characteristic is derived by the rule below:

The condition is verbose, because we need to relate a candidate to a specific offer of an organ. This

is a good time some more details of the object model:

Figure 1 Object model with fact type names for eligible and receiving candidate

7

To match a candidate with an organ, we must:

1. Make sure that the service is in initial state (previous decision of offer is empty) or that an

earlier offer as been declined

2. compare the type of organ needed by the candidate with the type of organ that belongs to

this specific offer

3. check that the priority of the candidate (‘his priority’ in the condition) is 1 higher than the

priority of the candidate of the previous decision (see remarks about shorthand above)

All the checks above are done by navigating the fact types in the object model. ALEF turn these into

phrases consisting of the role in the fact types, so a fact type navigated in one direction will be

phrased differently than the same fact type in the other direction. This can seem verbose, role

names can be shortened later to make for easier reading.

The eligible candidate is the person whose name appears in the action text above in rule next action

for offer 01. For example: ‘Contact Adam at TC North with offer of heart’. The action text is our way

of showing that we have all the information we need to communicate specific instructions for each

offer to the consuming application.

The same principles have been used to derive the ‘receiving candidate’, i.e. the person to whom the

organ of an offer must be sent for transplant.

A rather peculiar situation is described in the challenge, where one organ in the block needs to ‘wait’

for another organ to be completely declined by all candidates or be accepted by one candidate for it.

We have solved this by deriving a characteristic of the offer called ‘waiting on other organ in block’

8

We would have preferred to specify the last condition as ‘there is another offer that meets all of the

following conditions: the offer is not completely declined and the offer is not accepted’, but at this

time, ALEF does not have the notion of ‘self’ or ‘other’. So we resorted to counting the offers in the

block.

An offer is completely declined when:

Fall back phase
Here, we followed an approach similar to the one above. The main difference being that we now

attach actions to blocks instead of offers:

Figure 2 Object model with relevant parts for the fall back phase

9

In the above rule, the Block as a whole has been declined by a transplant center. This situation

corresponds with #17

Although organs can be offered as a block to transplant centres, a multiple organ block can be

partially accepted. This means we need to make it possible to have different decisions for each offer

in the block.

In the case of partial acceptance we have decided to use previous decision attributes for both the

block and the offer. This being a special case, for which we cannot validity controls in de xsd of the

service, we would normally add validation rules on the input message. To keep things simple, we

have not done this here.

10

Below, part of a test case in ALEF for this situation is shown:

The action text in this case should be: ‘Send organ heart to TC South’.

To point to the specific organ, we use a fact creation rule again:

Using this fact type, we can set the action text for Next Action in two steps:

11

In all other situations we can set both the action code and the action text in one rule. In this case

however, we create the Next Action in rule next action 3b.

It is impossible to also instantiate a fact type (using rule fact creation for organ type in next action

01) to this newly created Object at the same time. This is a timing issue we rarely encounter in

practice.

For the full text of the specifications in the xsd schema, the object model, fact types and rules,

please see Part 2.

Conclusion
Although the challenge is about a problem unfamiliar to us, ALEF did support our verbal way of

modelling very well. We can specify state and object model in a declarative, easily readable way.

ALEF allows us to continuously test our specifications, which we have used to our advantage in

building this solution. We can now generate an service, which can be consumed by another

application to keep state or we can use a tool like SOAP UI to simulate the entire process.

We have also discovered some improvements for ALEF, which we are happy about.

The LinkedIn challenge team

Our thanks to a developers for providing a translation of RegelSpraak to Englishvii.

i Please see: https://wendbarewetsuitvoering.pleio.nl/ for more (mostly Dutch) information about ALEF and
RegelSpraak.
ii As a rule, we adopt a closed world perspective to implement a decision on one tax subject. In this case, we
did so to protect ourselves against scope creep, loss of focus and unproductive discussions.
iii There are more combinations. We have left out duplicates (regarding A + B as equal to B + A, where A and B
are unique combinations of response and next action for the offer of heart and the offer of the lungs).
iv In ALEF 2022.3.0, the use of fact types to point to individual instances and strict checks on cycles made this
too cumbersome.
v Diagrams made with xsd diagram (http://regis.cosnier.free.fr).
vi Limited to one type of organ, corresponding with the challenge
vii Which can be found at: https://github.com/diederikd/RegelspraakEN

https://wendbarewetsuitvoering.pleio.nl/

